TIME - OPTIMAL PULSE OPERATION IN LINEAR SYSTEMS

PMM Vol. 32, No. 1, 1968, pp. 136-146

L.M. MARKHASHOV
(Moscow)

(Received January 30, 1967)

Optimal problems for linear system have been considered by many authors in connection with
the problem of moments [l]. In [2] their solution is reduced to finding the minimax of cer
tain known functions of special form, and in [3] to finding the maximum of a linear function-
al on a set which is itself determined from the maximum condition. Other modifications of
the problem have also been investigated M4 and 5].

In the present paper, as an addendum to the results of[1] conceming the problem of time-
optimal pulse operation, we propose to demonstrate the validity of the following statement:
by virtue of the conditions set forth in the solution of [1, finding the minimax can be re-
placed by the maximum problem (Sections 2 and 3).

We shall also give an elementary proof of the statement of {4] conceming the number of
controlling pulses (Section 3). A method for approximating solutions of linear differential
equations by means of polynomials in order to simplify the computational side of the problem
is described (Section 4).

1. Formulation of the problem. Let us consider the completely controlled sys-

tem [6] described by Eq.
dy/dt = Ay + bu

where 4 is an n X n constant matrix; ¥y and b are n-dimensional vectors; u is the scalar con-
trol.

By virtue of the complete controllability of the system, we can apply differentiation, el-
imination, and normalization of the control to form an equation in some linear combination x
of phase coordinates

2" 4 oa g™V 4 g =u (1.1)
We shall solve for Eq. (1.1) the problem of time-optimal motion from a given point (x,,

(D) 4uuey 2("=1) ) to the origin on the set of all scalar controls with an integrable absolute

value under the restriction
©

)]uldt<l

0

Let us denote the matrix of the normal system of independent solutions of Eq. (1.1) for
u = 0 by V(t), and tl.e instantaneous phase vector by z(¢t),

z1(8) .. .25 (2) z (1) z (0)
V()= os@®= - " 2(0)=
2"V () L,V () z(1 (1) ("1 (0)
dk
® = d—;‘- ' 7" (0) = 8*
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The group property of the solutions of differential equations implies, as we know, the
identity V=1{(t) = V(~ t). From [2] we infer the following result.

The optimal control u? is a pulse control,

w0 =, 8 (t — 1) + .. + ped (2 — 4)) (1.2)

where 8(t — ¢;) are delta (unctions.

The sum of absolute values of the controlling pulses y, is maximal, | p,] +oot || = L.

The instants ¢, ..., ¢, of application of the pulses are determined by the solution of the
problem

n n
min  max | Y oz Y (—0f = Pz, (1) [ =1 1.3
Jmin, max | 3 oo =9 2 era® D (8) 1.3)
L=l A=1
under the condition
n n
Z Ckl'o(k_“‘—“—' z Ck°xo(k—1)= —1 (14)
h=1 h=1

The optimal operating time T°is the smallest of all the T which satisfy not only (1.3},
but also the ‘‘hit"’ conditions

.
— 2 = ) 2 M (=t (k=0,...,n—1) (1.5)

fem=xi
We shail investigate conditions (1.2) to (1.5) with the aim of simplifying the actnal syn-

thesis of the optimal control,
e shall use the notation x,{~— ¢} = ¢ (). The function b ({t) satisfies the differential Eq.

o™ — 4"V 4 (1) = 0 (1.6)
and the initial conditions
eO=-=¢"P (O =0  ¢"VO ="}
Egs. (1.3) and (1.5) then become

n n
min  max | 3 (1) et =D ¢ (1) le® D ) [ =1 1.7
c.,...,c”0<t<7‘ kgl( K ;ﬂz_‘ll k ? ( )
and
r
— o™ = D (— P )iy (1.8)
{1
respectively.

We note that the function

Fc, t) = E (— 151 k=) 3)
Axmi

is the general solution of Eq. (1.6), since by virtue of the initial conditions for (1) at £ =0
the Wronskian

......... =] e i e = (=D (1.9)

is different from zero.

2. Ancillary propositions. 1° We introduce the conditions
sign F (e, tj) = sign p; 2.1)
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for each yi; # 0, t,,..., &, and ¢y,..., t, which is a solution of problem (1.8). (These relations
also appear in [4ﬁ.

Lemma 2.1. Let Egs. (1.7) and (1.8) be fulfilled. Then fulfillment of any two of the
three conditions (1.2), (1.4), and (2.1) implies fulfillment of the third.

Pro o f. Multiplying each Eq. of (1.8) by ag4, and summing over k, we obtain

n—1 r n—1 r
- 2 "k+1"‘om = Z By E ckﬂw(") (t) = Z p,sign F (¢, t,)
Fom) fame] k=0 fomel

It is clear that for ¢y and t; which constitute a solution of problem (1.7) we have the re-
lation F (e, t,) = sign F(c, ¢,). Thus,

n—1 r

— 2 ckﬂxo(") = E [ sign F (c, t‘)
A=0 i=1
Let conditions (1.4) and (2.1) be fulfilled. Then .
n—1 r
f= = D o™ = D) wsign F (o, 1) = ) wysignp, = DRI
k=0 i=1 i=1 f—y
1f conditions (1.4) and (2.1) are fulfilled, then
n—1 r r
- Z ¢ ™ = D) wysign F (¢, ) = 3w 1=1
k=0 i==1 =0

Finally, let conditions (1.2) and (1.4) be fulfilled. We shall show that this implies Eqs.
(2.1). Without limiting generality we can assume that among r numbers y; there aré none
which equal zero. We have

n—1 r
1=— 2 ch+‘1xo.“.) = 2 I'ny |6, (8, = signp,sign F (¢, )
h=0 i=1
Now let us assume that some (e.g. the first m) of the numbers § are negative. Then

r m r
1= N imld=— D imli+ X Inl

i==l i=1 {=m+1
Eq. (1.2) then implies that |pt;| +..e+ |it,] = 0, which is impossible. Hence, &8; = 1.
2% Letc®=(c x°,..., cn°) be some fixed set of values ¢, satisfying condition (1.4), and
let tl°< t2°<... < tr°= T be those values of ¢, for which

max | F (c°, t)] = |F (¢, t)| =1 o<t D) (2.2)
Let us consider the small p-neighborhood of the point ¢® defined by the conditions
|Ci—Ci°|<8i <p (i=1,..., n)

Let L; be the set of all values &; belonging to the above p-neighborhood for which
max | Flc, ¢)| is attained for 0. ¢ = t; < T which passes, by continuity, to tl°, where-¢ = ¢°,
Being the minimum or maximum point of F(c, ¢), the value ¢, is one of the solutions of Eq.
dF/3¢ = 0 under the condition d2F/3¢2 % 0. From the theery of implicit functions it follows
that t[},le function ¢, = ¢, (c) is continuous and has partial derivatives with respect to ¢, if
g & i

To within ¢;2 we have

B=1Fe 4@l =1Fe )+ 3 (50 4 2 ) | sl =

= de. at; aCi
n Al
= ( sign F (c°, ;°) 4 2 g: ai> sign F (c°, t;°) =
3 |o=c®

i=1



130 L.M, Markhashov

n
=14 D (=17 (15°) & sign F (¢°, 157) =1+ Dj.
{==)

It is necessary that ¢,°= T, since otherwise a *'hit"’ at the origin, which is a singular
point, would be impossible.

Condition (2.2) implies that if 25 0, T, then AF /3t = 0. If either t%= 0 or {°= T, then
the instants are fixed and the derivative 3F /%t does not appear in the expressions for F,
and F,. Since by the definition of the set L; we have

Fi=max|F{c, ¢ ;
i o<t<if" (e, )| for e L

it follows that

{=min max |F(c t)]=min (14 D)
Creeelyy otgT €, t,
Here
8y, + see + Enzo(n—l) = 09 D = (Dj for ee Lj (l = 17"'! 7')

The fact that the sets L, are defined by the intersection of the manifolds @i = 0 linear
in g; implies that the L, form connected domains, each of which (provided it is nonempty)
touches the origin (& = 0}, The totality of the domains L, fills the entire p-neighborhoed,
#o that the function max| F (c, ¢)| is defined everywhere in the p-neighborhood. Since no
fanction can have two different values at the same point which are also maximum values,
the function max |F (c, t)] is also single-valued. (This means that the domains L; which do
not coincide completely do not intersect in pairs), Finally, the continuity of the functions
t,(c) implies the continuity in the p-neighborhood of the functions max|F (c, #)|. The above

acts imply the following Lemma.

Lemmaea 2.2. Problem (2.3) breaks down into two independent problems, i.e.

a) the quantities c,° and tf’ are determined by the conditions

n n
ma 1)l (g 1:‘ — 1)t (1) | =1 2.
max ; (— 1) etV (1) él (= 1) e (1) (2.3)
rzo+ -+ 4 cpzeP Y = —1 (24)
b} The resulting ¢;° must satisfy the conditions
min @ (e) = 0 (leg] < p) (2.5)
e zp+ ... + ey z,M Y = (2.6)

where @ (&) i a single-valued continuous function defined throughout the p-neighborhood
by the conditions

n
@) = 3 (=0 gV ) sign F (5, ) (BE L)
=l
Here for each p and & &, L; we have the inequalities
n "
SV (=)D (1) e sign F (e, 17> ) (— 17 (1) eysign F (2, £p7)
i=1 =1
3% Let us establish the notation ay; = (— 1)*! =1 (£,°) sign F(c® ¢,°) (2.7) and consider
4 ) 1
the minimmm of the function P (e) defined by the conditions

O(e)=a;e1+ - +ae, (e(—ELJ) 7=1,...7) 2.7

on linear mmifold (2.6).
We begin by showing that the function $(©) has & minimum if and only if the condition
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z> 0 is fulfilled for arbitrary g; not simultaneously equal to zero, and for any 2 satisfying
the condition z » ®(2).

Necessity follows immediately from the minimum condition: P (e)> 0 (e #0). Suffici-
ency can be proved indirectly. Let the ine«gality 2 > ®(e) imply that 2> 0 for any ¢, and
z, but let there exist a point e* for which @ (&*) < 0. Because z is arbitrary we can set
2=®(e*)+ 5, taking 8 > 0 sufficiently small. We then have z <0 and z > P (e), which is
impossible.

Let.us write

n; = (a5 &1 + ... + ajney) — 2z G=1,..,7n (2.8)
What we have just proved implies that the function ¥ (&) has a minimum if and only if
the inequality z > 0 follows from the system of conditions
M<0..., 1 <0 (2.9
In fact, by virtue of (2.7) if & & Ly, then
n n
E aje; > > iy, or "l,- >le (k< n)
i=1 i=1

If 2 3 ®(#), then n; <0, so that 7, < 0. Conversely, the conditions 7; > 7, and 7, <0
which are valid for & € L; imply that 2 >dce).

Let b be the ranle of the matrix [|a,,]| . If r > n =, it follows by (2.6) and (2.8) that the
quantities 7), + z, and therefore 7; and z are related by exactly r — n + 1 independent linear
relations. T{le inequality z > 0 evidently follows from conditions (2.9) if and only if 7; and
z are related by at least one linear dependence with coefficients of the same sign. Let us

consider three cases.
a) Letr=n=h, In this case 7, and z are related by just one linear dependence, i.e. by

Eq.

ayp...68, Mm+:z
.......... ~0 '
o - . 1‘0("—1) 0

or
My + oo+ Moy + (My+ .+ M) 2= 0

Here M, is the algebraic complement of the j-th element of determinant (2.10). The coef-
ficients of this linear bundle are of the same sign only if

MM; >0 (i, 1 =1,..., B} (2.11)

Thus, conditions (2.11) are necessary and sufficient for the function ® (&) to have a mini-
mum. Clearly, this minimum attained at the point € = 0 is isolated only if all of relations
(2.11) are strict inequalities. In fact, if one of the minors, e.g. M, , is equal to zero, then
to make z vanish we need merely set 7, =...=7, = 0. These equations are clearly satisfied
not only by zero values of e;.

In general the minimum of the function P (£) attained at the point. &= 0 is isolated only
if these does not exist a single linear relation with coefficients of the same sign relating
fewer than n quantities 7, + z.

b) Letr>n =h. Evidently in this case there necessarily exist n quantities 7;; 000, W
which together with (2.6) form a linear combination with coefficients of the same sign. This
means that the function @ (&) has a minimum if and only if among the r quantities 7, the
are n whose nonpositiveness implies the inequality 2 > 0. Solving any n Egs. of (2.8), e.g.
the first n Eqs. for 7; + z and setting the result into the remaining Egs. of (2.8) and (2.6),

we obtain Matiz=aum—+z)+...+a,(n,+ )
(2.12)
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nl’ + 5= a"'ﬂ, 1('\1 + ‘) + L + cr.n'n (ﬂ”r.+ ‘)
O=ay(m-+5)+...+an(in+s)
Let us consider all the possible linear relations
At +...+4, (0 +9)=0 (213)
fulfilled by virtue of aystem (2.12).
Substituting into (2.13) our expressions for 1,4, + 2,..., 7, + 3 and equating to zero the
coefficients of 7y + 2,0, Ny + 3, we find that
— A= A4, a, +eeet Ara,._n.v -+ g, (v=1,...,n) (2.14)
If the function ®® has a minimum, then there exists a relation (2.13) in which all the
A, which constitute the solution of system (2,14) are of the seme sign. For example, let
A, = A,°> 0. Sepcifying the quantities A%, 4 5,..., 4, in system (2.14) and reducing 4,,+,

beginning with A% 4,, we find that at least one of the coefficients 4,,..., 4., 4,4+, e.g.
A o 41, venishes before the others do. This means that there exist 4,> 0,..., 4,> 0

Ag(Ma+ 3+ ...+ 4,0+ 2 =0
where the sign of 77 ; does not affect the sign of 1.

Omitting the first Eq. in (2.8) and repeating the process r — n times, we see the validity

of the above statement.
¢) Letr<n. Relations of the (2.13) type then yield the system of Egs.

allAl +' . '+ arlAr + 7..2:0 =
e e w n e e w e e e PR (2.15)
al’”A,+. o ar,ﬂAr + Azpin1 = g

The existence of nonzero solutions of this system requires that the rank 4 of the matrix
||a" | be equal to the rank of the matrix

.« s e 0 . .

.......... (216)

and also that A Cr. First let A = r and detg;, %0 A, u=rh
Solving the first r Egs. of (2.15) for A, and requiring that they all be of the same sign,

we obtain the conditions

(—1)*IMisM* >0 Gyi=1,...7) 217
which are similar to conditions (2.11), Let M;* be the minor of the matrix {2.16) which we
obtain by crossing out the j-th column from the latter. If A <r and det gy, # 0 (A, p1= 1,000y 4)

we obtain a similar result in which the role of matrix (2.16) is played by the matrix
a3y ... "1;1 Ty

By -8y T
In both cases (A = 7, 5 <r) the function (&) has a minimum on the {1 ~ h)edimensional
linear manifold containing the point & = 0. Thus, the following Lemma is valid.
Lemma 2.3. Letthe rmk of the matrix

be A. This mstrix then contains A rows (if A< n) or s columns (if 7 3 n) (e.g. the firat A rows
or columns) from which we can construct the matrix.
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1...1 0

(2.18)

...........

al,h"‘ ah.h To

which has the following property (*): the function ® () has a minimum if and only if the
pairwise products of the algebraic complements of the elements of its first row are nonnega-
tive, This minimum attained at the point € = O is isolated(**) only in the case A =n.

3. Reduction of the problem. Let the rank of the matrix
Negl=1(— "% (¢5°) sign F (¢°, ;%))
be n, We must find an expression for the minor M;* of the matrix
 (1°) sign F (¢°, 1r°) ... O (tn°)Sign F (%, 1Y) =0
(— D"V (1°) sign F (¢°, %) . . . (— 1" 19"V (1,°) sign F (¢°, £,°) o™V
obtained by crossing out its j-th column. Substituting in %%} from (1.8), we obtain
My*= (— 1)" Dy, sign F (°, t,°) . .. sign F (¢, t°)

Here D is the determinant of the matrix {|a; || . Similarly, (3.1)
Mj* = (— )" D sign F(e°, 1,°) ... sign F (¢°, £, ") pjsign £ (¢° 1, °) . . . sign F (c°, 1,°)

Theorem 3.1. On the number of pulses (***). The number r of pulses y; effecting
time=-optimal operation does not exceed the dimensionality of the problem

r<n (3.2)

Proof. Letus show that if r > n, then either the time T is not optimal or time-optimal
operation is also realizable with a number of pulses r < n. In fact, let r > n. By Lemma 2.3
the conditions whereby ®{&) has a minimum are that

MM; = (— 1P MPM* >0 (3.3)

for each pair of minors M* of matrix (2.22).
First let b = n. Let us define the new values p,” of the pulses by Formulas

n
—zg® = Z (— 1™ (1) iy Pppy = =, =0 (3.4)
L2251
Making use of (2.1), (3.1), and (3.3), we obtain
MiM;= (—1*"73D® (u sign ;) (py'sign ps) > 0 (3.9)

Hence, .
(ws” sign ) (p4' sign pj) > 0.
On the other hand, conditions (2.3) and (2.1) imply fulfillnent of Egs.

a@ () 4+ - - (— )" @™V (1) = sign

a1Q (tn) 4 -+ -+ (— 1) ey @™V (1) = signpy
€19 - - c,,xo‘"“) =—1
From this we obtain
@ (t) ... (— 1) gD (1) sign
P(tn) ... (— )" " V(1)  signp,

Ty e —1

*) Here and below we assume that matrices of the (2.18) type do not necessarily contain the
first columns (rows) of the matrix ﬂa“l; we consider them to have been renumbered.
(Footnotes continued on next page)
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By virtue of (3.4) this is equivalent to Eq.
@ (). . (— 1)Vl (1)
............. (1 —uy' sign —- . — i, sign,) = 0

Q(lin). .. (— 1)714‘?("—1, (tn)

Hence,

By signpy + ..+ py' sign pp =1 (3.6)

Comparing (3.5) and (3.6), we obtain

pi’signp; >0 (7=1,., r), or sign py = sign py

Thus, if we know a time -optimal operating mode with r > n pulses occurring at the ins-
tants ¢,,..., {,, then from these instants we can choose n (they are denoted by £y,..., £, in
the proof) and set # equal to zero at the remaining instants, so that all the time optimality
conditions, i.e. (1.5), (2.1), and (2.3) to {2.6), are fulfilled.

If it turns out here that ¢, < T, then the initially determined T is not optimal. For s <n
we must carry out the proof using linear dependences among the elements of the matrix
}§3“H as is done below in the proof of Theorem 3.3. The proof remains unchanged in other
respects. Theorem has been proved.

The above analysis of conditions (1.2) to (1.5) enables us to formulate the following

result.
Theorem 3.2. The optimal contro! in the time-optimal operation problem for Eq.
(1.1) is a pulse control. The sum of absolute values of the controlling pulses y, is maximal,

il + o+ el =1

The instants ty,..., ¢, when the pulses are applied are-determined by the solution of Prob-
lem (2.3)!

The optimal operating time T° is the smallest of all the T which satisfy (2.3), hit condi-
tions (1.8) where k = O,u00, n — 1, and conditions (2.1) for the signa of the pulses for each
#y # 0. The number r of nonzero pulses satisfies the inequalities

Ar<n
where  is the rank of the expanded matrix of system (1.8).

Proof. According to Lemmas 2.1 and 2.2, conditions (2.3), (2.1), and (1.2) replace
condition (1.4). The condition r £ n is proved in Theorem 3.1. The inequality A € r is the
condition of solvability of system (1.8). Teking into account Lemms 2.2, we must show that
conditions (2.5) and (2.6) are satisfied by virtue of the conditions of our theorem. Let us

show this.
We consider matrix (2.18) of Iiemma (2.3) which we shall have occasion to use below.
Let its rank r be n. With allowance for conditions (2.1), Formulas (3.1) become

Mj* = (—1)""Dsignp;...signp,_p,signp;,, .. .signp,
Then .
MM = (— 1) M* M;* = Dy sign pyp sign i = D*| i | [0 >0
According to Lemma 2.3 this means that the function $(€) has a minimum (condition

{2.5)) on manifeld (2.6).
Now let r = 4 <n. By agreement, the matrix

@ () s P (th) o
{(— i)n—-l‘p(n—l) (t). ..yt (p(n-l) (tn 2PV

contain h linearly independent rows (e.g. the first 4 rows). There exist numbers alz,..., O
such that the relations

{Footnotes continued from previous page)
*%) Lemmas 2.2 and 2.3 are related to the results of K. Carathéodory and N.G. Chebotarev{7].
+#) See also [3].
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2gV = aylzo + - - - aple®V (I=h+1,....n)
— DoV ) =alg )+ +a (=M V@) (i=1,...,H)
are valid.
We have
n h
Oy= D) (— 1)V )= Q) (— 1) eV (1) +
=1 =1
n h
+ 2 TP = 3 (— VT ERYY @)
I=h+1 j=1
where
n
Ej=¢e;+ 2 Gjl-lsl i=1,...,h)
I=h-1
Similarly,

h
81T0 -+« - Gnl‘o("'l) = Z ijo(i—l)
j==1
Now we need merely cite the first part of the proof of this theorem and Lemma 2.3.

4. Approximation of the function F(e, ¢) by polynomials. From Theorem
3.2 we see that the principal difficulty of the initial problem lies in choosing the parameters
¢; of the function

n
Fc, t)= Z (— j)i"'lc‘q)(i-l) (t)
i=]
in such a way that the curve of this function on the segment {0, T] lies inside the strip
| Fle, t)l £ 1 and touches its boundaries the required number of times r < n.

The fact that we can here ignore the behavior of the function F(c, t) outside the above
strip enables us to approximate it by the method described below. The basic purpose of this
approximation is to provide a means of effective computation of the instants ¢, of application
of the pulses (i.e. of the points for which Flc, ¢;) = 1).

Let us write

k
"_1'(:”(7""__‘)= 19 () = 100, (0 () = 1,0

where ¢ is the solution of the differential Eq.

1 = gy f D) o (— ) g, 4.1)

Integrating Eq. (4.1) n times from 0 to ¢ and transforming, we obtain

Fe, y=1@)=/,

n—1 n )
f=hot 3 (9= 3 =0 ah®) L+ N e d2)
=1 kjms % okm ¥

where the ‘subscript k at the integral sign denotes integration overt. If 1 f< — 1 on the
segment [0, T] we obtain

. ¢ k
(— 1)*1a, \ fdt  (— 1) gy § dt = (—1)*1a, i‘_l for (—1)*'a >0
¥ /

(—1)¥ 1 S jdt > (—1)*-1a,,g dt = (—1)*1a, %’;_ for (—1)lax <O
& K
Hence,
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ol < =0 i < o
K
For 0. ¢t K T this yields
n tk n t
Py=Y,— Nla| r </<¥, Dlalgr =P} 4.3)
[E 31 k=1
n g
¥ =t (fo"’— 3 (_,)k—lamm)F
=1 fobj=s

If we take the polynomial ¥ = %(Px,n"' + Py o) as our first approximation for f, the
error is given by

n k
t
Ayp=II—¥ = Z lag |57 4.4
kaml

Making use of estimate (4.3) of the lower and upper bounds, we can construct the next
approximation md my pumber of sibsequent ones.

Let Pm n $fEP;, o+ where P, . are polynomials of degree mn; n is the number of
the lppmximanon.

Let us define the functions

Bt =11 —(— 1) signax] P} + a1+ (— 1) sign ay]
Ea=1[1 + (— ¥ 1signay] Py i+ [1— (— ¥ signa] P, o
Then clearly,
(—1)¥ 2 gy X Eidt << (—1)¥1ay S fdt < (— 1) 1a, 3 Eydt (4.5)
k E £
Simplifying, we obtain

¥

-

n
- 1 -
Py n= m+1n“"’2— 2 lag |\ (Ppn— P ) 9t ST S¥yy ot

k=1

n -
5 E | ak |S(Pm,:—|—'Pm,;)thszl,n
k

R

P=3

where

Frman=fo+ 2 (fo"’—- > - 1)"-lak;°<i))_::_+
=t kti==s

Z‘, 1 ‘a,(g{ — P, ;) dt
h=1

If we assume that f= ¥, , this yields the following recurrent formula for the approxima-
tion error:

Ppltin— Por, <
— ‘m+in mein __
By n = .__’...2___.}_3_ 2 oy ;SAmmdt

Letusshowthatas m increases for any fixed n thu: error tends to zero uniformly with ¢
on the segment [0, T] i.e. that
n n
&
Am:»El 1ak;m_<aek21 - Sate! Saely, a==max {|a|}



Time-optimal pulse operation in linear systema 137

In general, if

(“e )"'

Apn <7 — ™ (4.6)
then

Bsg,n= Zlak|§ A< S gy | e
=1

k=1 &
(aeT ™ "; fh+m (aeT ym $#m1
=Tm 2 mED) o mIh = (mgt @ Z(m—{—-Z) NCETIR
2eT YL

< ((m-gi)x et

Thus, for 0 Lt L T <oco we have
(aTeT )™
manS

This mems that A, ,+ 0 as m » oo, The coarseness of the above estimates shows that,
in fact, the approximations converge much more rapidly for T <oo. If a; and T are small,
then it is enough to use the first approximation.

Let us find the function which approximates the ¢ (¢) appearing in Flc, ¢) = f(¢) when fis
approximated by the polynomial ‘P
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